Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Hexa- μ-chloro- μ_{4}-oxo-tetrakis-\{[5-(2,4,6-trimethylphenyl)pyrazole$\left.\kappa N^{2}\right] \operatorname{copper}($ II) $\}$

Xiaoming Liu, Colin A. Kilner and Malcolm A. Halcrow*

Department of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, England
Correspondence e-mail: m.a.halcrow@chem.leeds.ac.uk

Received 24 January 2003
Accepted 4 February 2003
Online 28 February 2003

The title compound, $\left[\mathrm{Cu}_{4} \mathrm{Cl}_{6} \mathrm{O}\left(\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2}\right)_{4}\right]$, is a new example of the well known $\left[\mathrm{Cu}_{4}\left(\mu_{4}-\mathrm{O}\right)(\mu-X)_{6} L_{4}\right]$ class of complex $\left(X^{-}\right.$ is $\mathrm{Cl}^{-}, \mathrm{Br}^{-}$or I^{-}, and L is a monodentate ligand). The molecule has crystallographic C_{2} symmetry, with two Cl^{-}ions on each edge of a Cu_{4} tetrahedron. Two of these, on opposite edges of the tetrahedron, accept intramolecular hydrogen bonds from two of the pyrazole $\mathrm{N}-\mathrm{H}$ donors.

Comment

The $\left[\mathrm{Cu}_{4}\left(\mu_{4}-\mathrm{O}\right)(\mu-X)_{6} L_{4}\right]^{n-}$ structure type is well known, where X^{-}can be $\mathrm{Cl}^{-}, \mathrm{Br}^{-}$or I^{-}and L is a monodentate ligand. The terminal ligand L can be a halide (giving $n=4$) or a variety of neutral monodentate N or O donors (giving $n=0$), such as imidazoles (Atria et al., 1999; Clegg et al., 1988), thiazolines (Bolos \& Christidis, 2002), pyridines (Gill \& Sterns, 1970; Haendler, 1990; Kilbourn \& Dunitz, 1967), pyrazines (Näther \& Jeß, 2002), amines (Pavlenko et al., 1993), sulfimides (Kelly et al., 1999), phosphine oxides (Jorík et al., 1996) or sulfoxides (Guy et al., 1988) (not a complete list). Only one previous example containing a pyrazole terminal ligand has been structurally characterized, namely $\left[\mathrm{Cu}_{4}\left(\mu_{4}-\mathrm{O}\right)(\mu-\right.$ $\left.\mathrm{Cl})_{6}\left(L^{1}\right)_{4}\right]$ (L^{1} is 3,4-dimethyl-5-phenylpyrazole; Keij et al., 1991). As part of our studies of the reactions of substituted pyrazoles with $\mathrm{Cu}^{\text {II }}$ salts (Liu et al., 2001; Liu, McAllister et al., 2002; Liu, McLaughlin et al., 2002), we have now isolated the title compound, (I), as a second example with a similar formulation, namely $\left[\mathrm{Cu}_{4}\left(\mu_{4}-\mathrm{O}\right)(\mu-\mathrm{Cl})_{6}\left(L^{2}\right)_{4}\right]\left[L^{2}\right.$ is 5-(2,4,6trimethylphenyl)pyrazole].

The approximately tetrahedral cluster core in (I) has crystallographic C_{2} symmetry, with the C_{2} axis at $\left(\frac{1}{2}, y, \frac{1}{4}\right)$ passing through atoms $\mathrm{Cl} 34, \mathrm{O} 3$ and Cl 35 (Fig. 1). The two unique Cu centres have very similar distorted trigonal-bipyramidal stereochemistries, with τ values of 0.7198 (14) (Cu1) and $0.7560(12)(\mathrm{Cu} 2)$, which are closer to the ideal value of 1 for a trigonal bipyramid than to the value of 0 expected for an ideal
square pyramid (Addison et al., 1984). The $\mathrm{Cu}-\mathrm{N}, \mathrm{Cu}-\mathrm{O}$ and $\mathrm{Cu}-\mathrm{Cl}$ distances in the molecule lie within the usual ranges, but show small differences between the two Cu centres.

(I)

Interestingly, the $\mathrm{Cu}-\mathrm{Cl}$ bonds to the two ligands that accept $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds (see below) are not notably longer than the other $\mathrm{Cu}-\mathrm{Cl}$ bonds in the molecule, showing that the small $\mathrm{Cu}-\mathrm{Cl}$ bond-length variations cannot be attributed to this feature of the structure. The $\mathrm{Cu}-\mathrm{O}-\mathrm{Cu}$ angles in the molecule also show small distortions from the tetrahedral angle. These small deviations from ideal tetrahedral molecular symmetry are common in $\left[\mathrm{Cu}_{4}\left(\mu_{4}-\mathrm{O}\right)(\mu-\right.$

Figure 1
The molecular structure of (I), with 50% probability displacement ellipsoids and the atom-numbering scheme [symmetry code: (i) $1-x, y$, $\left.\frac{1}{2}-z\right]$. All carbon-bound H atoms have been omitted for clarity.

Figure 2
A partial packing diagram for (I), highlighting the association via the mesityl substituents to give discrete $\pi-\pi$-stacked tetrads. All atoms are plotted with arbitrary radii.
$X)_{6} L_{4}$] complexes, and have a significant effect on their magnetic properties (Blake et al., 1997, and references therein). The four unique $\mathrm{Cu} \cdots \mathrm{Cu}$ distances in the structure are in the range 3.0570 (4)- 3.1689 (5) \AA.

The four L^{2} ligands in the molecule form two pairs of intramolecular hydrogen bonds, with $\mathrm{N} 19-\mathrm{H} 19$ and $\mathrm{N} 19^{\mathrm{i}}-$ H19 ${ }^{\mathrm{i}}$ [symmetry code: (i) $1-x, y, \frac{1}{2}-z$] interacting with atom Cl 34 , and $\mathrm{N} 5-\mathrm{H} 5$ and $\mathrm{N} 5^{\mathrm{i}}-\mathrm{H} 5^{\mathrm{i}}$ with atom Cl 35 . This is the same pattern of intramolecular hydrogen bonding shown by $\left[\mathrm{Cu}_{4}\left(\mu_{4}-\mathrm{O}\right)(\mu-\mathrm{Cl})_{6}\left(L^{1}\right)_{4}\right](\mathrm{Keij}$ et al., 1991).

The molecules in the crystal associate through two unique $\pi-\pi$ interactions. One is between the aryl groups C23-C28 and $\mathrm{C} 9{ }^{\text {ii }}-\mathrm{C} 14^{\text {ii }}$ [symmetry code: (ii) $1-x, y+1, \frac{1}{2}-z$]. The leastsquares planes of these two groups have a dihedral angle between them of $5.89(11)^{\circ}$, and are separated by an average of $3.72 \AA$. The centroids of the two interacting aryl rings are offset by $1.69 \AA$. The second $\pi-\pi$ interaction is between the opposite face of $\mathrm{C} 23-\mathrm{C} 28$ and $\mathrm{C} 23^{\mathrm{iii}}-\mathrm{C} 28^{\mathrm{iii}}$ [symmetry code: (iii) $1-x, 2-y, 1-z$]. These two rings are coplanar by symmetry and are separated by $3.70 \AA$, with their centroids offset by $2.59 \AA$. The effect of these interactions is to associate the molecules into discrete $\pi-\pi$-stacked tetrads, which zigzag along the crystallographic [110] direction (Fig. 2). There are no other significant intermolecular interactions in the lattice.

Experimental

A solution of $\mathrm{CuCl}_{2}(0.13 \mathrm{~g}, 1.0 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{ml})$ was added to a solution of 3-mesitylpyrazole ($0.37 \mathrm{~g}, 2.0 \mathrm{mmol}$) and NaOH $(0.040 \mathrm{~g}, 1.0 \mathrm{~mol})$ in $\mathrm{MeOH}(20 \mathrm{ml})$, yielding an immediate green precipitate. The mixture was stirred overnight and then filtered. Slow concentration of the filtrate by evaporation yielded dark-blue crystals of (I), contaminated by a smaller amount of paler blue $\left[\mathrm{CuCl}_{2}\left(L^{2}\right)_{4}\right]$.

Elemental analysis of (I), found: C 46.9, H 4.9, N 9.1\%; calculated for $\mathrm{C}_{48} \mathrm{H}_{56} \mathrm{Cl}_{6} \mathrm{Cu}_{4} \mathrm{~N}_{8} \mathrm{O}: \mathrm{C} 47.0, \mathrm{H} 4.6, \mathrm{~N} 9.1 \%$.

Crystal data

$\left[\mathrm{Cu}_{4} \mathrm{Cl}_{6} \mathrm{O}\left(\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2}\right)_{4}\right]$
$D_{x}=1.543 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=1227.87$
Monoclinic, C2/c
$a=21.6279$ (2) \AA
$b=11.8266$ (1) \AA
$c=20.8023$ (3) \AA
$\beta=96.4448$ (5) ${ }^{\circ}$
$\beta=9.4478(5) \AA^{3}$.
$V=5287.28(10) \AA^{3}$
$Z=4$

$$
\text { Mo } K \alpha \text { radiation }
$$

Cell parameters from 45511 reflections
$\theta=2.6-27.5^{\circ}$
$\mu=1.93 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Lath, dark blue
$0.30 \times 0.24 \times 0.14 \mathrm{~mm}$

Data collection

Nonius KappaCCD area-detector diffractometer
Area-detector scans
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
$T_{\text {min }}=0.595, T_{\text {max }}=0.774$
45511 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.102$
$S=1.05$
6034 reflections
311 parameters
H -atom parameters constrained

6034 independent reflections
5044 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.075$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-27 \rightarrow 28$
$k=-15 \rightarrow 15$
$l=-26 \rightarrow 26$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.055 P)^{2}\right. \\
& +4.466 P \text {] } \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.49 \mathrm{e}_{\AA^{-3}}{ }^{-3} \\
& \Delta \rho_{\min }=-0.81 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { (Sheldrick, 1997) } \\
& \text { Extinction coefficient: } 0.00148 \text { (15) }
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

Cu1-O3	1.8987 (11)	$\mathrm{Cu} 2-\mathrm{Cl} 32$	2.4517 (7)
$\mathrm{Cu} 1-\mathrm{N} 4$	1.9460 (19)	$\mathrm{Cu} 2-\mathrm{Cl} 33{ }^{\text {i }}$	2.3944 (7)
$\mathrm{Cu} 1-\mathrm{Cl} 32$	2.3370 (7)	$\mathrm{Cu} 2-\mathrm{Cl} 34$	2.4353 (6)
$\mathrm{Cu} 1-\mathrm{Cl} 33$	2.4226 (7)	$\mathrm{Cu} 1 \cdots \mathrm{Cu} 2$	3.0570 (4)
$\mathrm{Cu} 1-\mathrm{Cl} 35$	2.4900 (7)	$\mathrm{Cu} 1 \cdots \mathrm{Cu} 2^{\text {i }}$	3.0873 (4)
Cu2-O3	1.8897 (12)	$\mathrm{Cu} 1 \cdots \mathrm{Cu} 1^{\text {i }}$	3.1689 (5)
Cu2-N18	1.936 (2)	$\mathrm{Cu} 2 \cdots \mathrm{Cu} 2^{\text {i }}$	3.1000 (6)
$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{N} 4$	174.93 (8)	$\mathrm{N} 18-\mathrm{Cu} 2-\mathrm{Cl} 33^{\text {i }}$	94.33 (7)
$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{Cl} 32$	87.19 (4)	$\mathrm{O} 3-\mathrm{Cu} 2-\mathrm{Cl} 34$	85.37 (5)
N4-Cu1-Cl32	96.36 (6)	$\mathrm{N} 18-\mathrm{Cu} 2-\mathrm{Cl} 34$	93.31 (6)
$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{Cl} 33$	83.66 (2)	$\mathrm{Cl} 33^{\mathrm{i}}-\mathrm{Cu} 2-\mathrm{Cl} 34$	131.71 (2)
N4-Cu1-Cl33	97.46 (6)	$\mathrm{O} 3-\mathrm{Cu} 2-\mathrm{Cl} 32$	84.12 (2)
$\mathrm{Cl} 32-\mathrm{Cu} 1-\mathrm{Cl} 33$	121.70 (3)	$\mathrm{N} 18-\mathrm{Cu} 2-\mathrm{Cl} 32$	98.77 (7)
$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{Cl} 35$	83.92 (5)	$\mathrm{Cl} 33^{\mathrm{i}}-\mathrm{Cu} 2-\mathrm{Cl} 32$	118.77 (3)
N4-Cu1-Cl35	91.01 (6)	$\mathrm{Cl} 34-\mathrm{Cu} 2-\mathrm{Cl} 32$	106.94 (2)
$\mathrm{Cl} 32-\mathrm{Cu} 1-\mathrm{Cl} 35$	131.74 (2)	$\mathrm{Cu} 2-\mathrm{O} 3-\mathrm{Cu}_{2}{ }^{\mathrm{i}}$	110.21 (10)
$\mathrm{Cl} 33-\mathrm{Cu} 1-\mathrm{Cl} 35$	104.297 (19)	$\mathrm{Cu} 2-\mathrm{O} 3-\mathrm{Cu} 1$	107.593 (12)
$\mathrm{O} 3-\mathrm{Cu} 2-\mathrm{N} 18$	177.07 (7)	$\mathrm{Cu} 2-\mathrm{O} 3-\mathrm{Cu} 1^{\text {i }}$	109.161 (13)
$\mathrm{O} 3-\mathrm{Cu} 2-\mathrm{Cl} 33^{\text {i }}$	84.63 (4)	$\mathrm{Cu} 1-\mathrm{O} 3-\mathrm{Cu} 1^{\text {i }}$	113.12 (10)

Symmetry code: (i) $1-x, y, \frac{1}{2}-z$.

Table 2
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N5-H5 C Cl35	0.88	2.56	$3.079(2)$	119
N19-H19 $\cdots \mathrm{Cl} 34$	0.88	2.83	$3.274(2)$	113

The slightly high displacement parameters of atoms C26, C27 and C30 may be indicative of a small degree of librational disorder involving these atoms. However, attempts to refine a static disorder model for the C23-C31 mesityl group to take account of this were unsuccessful and the original model has been retained. All H atoms were placed in calculated positions and refined using a riding model, with the methyl group torsion angles being allowed to refine freely. The fixed $\mathrm{C}-\mathrm{H}$ distances were: $\mathrm{C}-\mathrm{H}($ aryl $)=0.95, \mathrm{C}-\mathrm{H}($ methyl $)=$ 0.98 and $\mathrm{N}-\mathrm{H}=0.88 \AA$. The H -atom $U_{\text {iso }}$ parameters were fixed at $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ for the aryl $\mathrm{C}-\mathrm{H}$ and the $\mathrm{N}-\mathrm{H}$ groups, and at $1.5 U_{\text {eq }}(\mathrm{C})$ for methyl $\mathrm{C}-\mathrm{H}$.

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: local program.

The authors acknowledge the Royal Society of London for a University Research Fellowship to MAH, and the EPSRC for the purchase of the diffractometer.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1524). Services for accessing these data are described at the back of the journal.

References

Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. \& Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.

Atria, A. M., Vega, Z., Contreras, M., Valenzuela, J. \& Spodine, E. (1999). Inorg. Chem. 38, 5681-5685.
Blake, A. B., Anson, C. E., arapKoske, S. K., Cannon, R. D., Jayasooriya, U. A., Saad, A. K., White, R. P. \& Summerfield, D. (1997). J. Chem. Soc. Dalton Trans. pp. 2039-2043.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Bolos, C. A. \& Christidis, P. C. (2002). Acta Cryst. C58, m29-m30.
Clegg, W., Nicholson, J. R., Collison, D. \& Garner, C. D. (1988). Acta Cryst. C44, 453-461.
Gill, N. S. \& Sterns, M. (1970). Inorg. Chem. 9, 1619-1625.
Guy, J. T. Jr, Copper. J. C., Gilardi, R. D., Flippen-Anderson, J. L. \& George, C. F. Jr (1988). Inorg. Chem. 27, 635-638.

Haendler, H. M. (1990). Acta Cryst. C46, 2054-2057.
Jorík, V., Koman, M., Makáňová, D., Mikloš, D., Broškovičová, A. \& Ondrejovič, G. (1996). Polyhedron, 15, 3129-3137.
Keij, F. S., Haasnoot, J. G., Oosterling, A. J., Reedijk, J., O'Connor, C. J., Zhang, J. H. \& Spek, A. L. (1991). Inorg. Chim. Acta, 181, 185-193.
Kelly, P. F., Man, S.-M., Slawin, A. M. Z. \& Waring, K. W. (1999). Polyhedron, 18, 3173-3179.
Kilbourn, B. T. \& Dunitz, J. D. (1967). Inorg. Chim. Acta, 1, 209-216.
Liu, X.-M., Kilner, C. A., Thornton-Pett, M. \& Halcrow, M. A. (2001). Acta Cryst. C57, 1253-1255.
Liu, X., McAllister, J. A., de Miranda, M. P., Whitaker, B. J., Kilner, C. A., Thornton-Pett, M. \& Halcrow, M. A. (2002). Angew. Chem. Int. Ed. 41, 756758.

Liu, X., McLaughlin, A. C., de Miranda, M. P., McInnes, E. J. L., Kilner, C. A. \& Halcrow, M. A. (2002). Chem. Commun. pp. 2978-2979.
McArdle, P. (1995). J. Appl. Cryst. 28, 65.
Näther, C. \& Jeß, I. (2002). Acta Cryst. E58, m4-m6.
Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Pavlenko, V., Kokozay, V. \& Babich, O. (1993). Z. Naturforsch. Teil B, 48, 1321-1324.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

